
An Actor-Based
Runtime Monitoring System

for Web and Desktop Applications

Paul Lavery* & Takuo Watanabe
Department of Computer Science, Tokyo Institute of Technology

(*Currently with ContentSquare)

Jun. 27, 2017
IEEE/ACIS SNPD 2017, Kanazawa, Japan

1

About This Talk

• Introduces a library-based approach to runtime-
monitoring for actor-based systems
• Two case studies to evaluate the proposal

• Talk outline
- Runtime Verification/Monitoring
- Motivation: GPL/Library-based Approach
- Monitoring Module for Scala/Akka
- Case Study
- Conclusion

2

Runtime Monitoring/Verification

• "A computing system analysis and execution approach
based on extracting information from a running system
and using it to detect and possibly react to observed
behaviors satisfying or violating certain properties"
• From http://fsl.cs.illinois.edu/index.php/Runtime_Verification

• A kind of 'light-weight' formal methods
- Bridging the gap of (static) verification and testing
• RM/RV can deal only with finite execution traces

- Properties are usually specified in a formal notation/DSL
• ex. RE, Büchi Automata, LTL, PT-LTL, PT-DTL

3

http://fsl.cs.illinois.edu/index.php/Runtime_Verification

PT-LTL

• Past-Time Linear Temporal Logic [Manna et al '92]

• Formula

- temporal operators: "previously", "sometime in the past",
"always in the past", "since"

• Example [Sen et al '04]

- "Whenever action starts to be true, it is the case that start
was true at some point in the past and since then stop was
never true"

4

�((action ^ �¬action)! (¬stop S start))

F ::=true | false | p | ¬F | F ^ F | F _ F | F ! F |
� F | êF | �F | F S F

PT-DTL

• Past-Time Distributed Temporal Logic [Sen et al '04]

• i-formulae / i-expressions
- Fi, ξi : formula / expression local to process pi
• Subscript indicates that they refers to the local names

• Epistemic formulae / expressions
- @jFj, @jξj : refers to the latest local knowledge of pi about pj

5

Fi ::= true | false | P(
�!
⇠i) | ¬Fi | Fi ^ Fi | Fi _ Fi | Fi ! Fi |

� Fi | êFi | �Fi | Fi S Fi | @ jF j

⇠i ::= c | vi | f (
�!
⇠i) | @ j⇠ j

�!
⇠i ::= (⇠i, . . . , ⇠i)

K. Sen, A. Vardhan, G. Agha and G. Roşu, "Efficient Decentralized
Monitoring of Safety in Distributed Systems", ICSE 2004.

Epistemic Formulae/Expressions

• Examples
- @2F2 in p1 at d equals to F2 in p2 at h
- @2ξ2 in p1 at d equals to ξ2 in p2 at h

6

a b c d e

f g h i j k

l m n o

p1

p2

p3

@2F2

F2

Classification of RV/RM

• Property Specification
- General Purpose Languages vs. DSL/Formal Notations
• DSL: External or Embedded

- Imperative vs. Declarative
• Imperative : GPL, Automata
• Declarative: Temporal Logic

• Monitoring & Enforcement (Mitigation)
- Modified Runtime vs. Unmodified Runtime
• Modified : Kernel, VM, Language Runtime, Libraries
• Unmodified : Code Modification/Instrumentation, Reflection

- Synchronous vs. Asynchronous
- Centralized vs. Decentralized

7

Our Previous Works on RV/RM

• Runtime Security Monitor for JVM
- Property Specification
• DSL based on Büchi Automata [Watanabe et al, 2003]

- Enforcement Mechanism: Code Instrumentation
- Application to Secure E-Mail System [Shibayama et al, 2003]

• Runtime Monitoring of Information-Flow Properties
• Theoretical Foundation of Information-Flow Property

Monitoring [Nagatou et al, 2005]
• Application to Detecting Covert Channels [Nagatou et al, 2006]

8

Watanabe, Yamada, Nagatou, "Towards a Specification Scheme for Context-Aware Security Policies for Networked Appliances", IEEE STFES 2003.
Shibayama et al, "AnZenMail: A Secure and Certified E-mail System", Software Security: Theories and Systems, LNCS 2690, 2003.
Nagatou, Watanabe, "Execution Monitoring and Information Flow Properties", IEEE DSN 2005.
Nagatou, Watanabe, "Run Time Detection of Covert Channels", IEEE ARES 2006.

About this Work

• Goal
- Provide an easier access to runtime monitoring by

presenting an easy-to-use, scalable monitoring framework
that provides developers with a way to dynamically verify
some important specifications and, in case they are
violated, with a mitigation mechanism

• Proposed Solution
- Target: Actor-based Applications written in Scala/Akka
- Property Specification: Scala
• Monitor/Worker/Listener Classes
• Checking code embedded in the target applications source
• Monitoring and Enforcement
• Scala library that receives monitoring information as

asynchronous messages

9

The Actor Model

• A concurrent computation model based on
asynchronous message passing
- Originally invented by  

C. Hewitt in 1970s and  
developed by G. Agha and  
other researchers in 1980-90s.

- Basis of many languages: 
Erlang, Scala (Akka), Pony, etc.

• A system is modeled as a collection of actors that
communicate with each other only via messages.
- "Shared Nothing": no shared states, no global clock
- No channels (mail address based)
- Dynamic Topology (mail addresses are 1st class)

10

actormessage

Monitoring Modules

• The desired properties of an application are specified
as a collection of monitoring modules.

• At the runtime, modules check those properties and
executes some compensation (mitigation) tasks if they
are violated
- one monitor per property
- asynchronous monitoring (non-blocking)

• Modules are written as Akka actors

11

Monitoring Architecture (1)

• Master actor
- Checks whether the

specified property holds in
current system state by
executing the property
method.

- If it does not, sends the
arguments for mitigation to
the listener actor.

• Listener Actor
- Performs compensation

(mitigation) tasks

12

Application

Monitor	1

Master	actor

Listener	actor

Verifies	 if	property	
holds

If	not,	runtime	
compensation	 is	
executed	

Monitor	2

Master	actor

Listener	actor

Verifies	 if	property	
holds

If	not,	runtime	
compensation	 is	
executed	

Monitoring Architecture (2)

• (Extended) Master Actors
- Creates a pool of workers
- Distributes the work to the

workers in a round robin
fashion through a router

- Receives the result message
from the workers and forwards
the content to the listener

• Worker Actors
- Executes property method and

if the property does not hold
sends the arguments for
mitigation to the master actor

- Able to check properties in
parallel independently

13

Monitor	2

Master	actor

Listener	actor

Application

Monitor	1

Master	actor

Listener	actor

Verifies	 if	property	
holds

If	not,	runtime	
compensation	 is	
executed	

Worker	actor

Worker	actor

How to Integrate Monitors

• Define Monitors/Workers/Listeners
- Monitors
• property: S => (Boolean, T)

- If false the property does not hold and mitigate is executed with T-typed
element as argument

- If true the property holds and nothing more is done
• mitigate: T => Unit

• Modify the Target Application Code
- Insert transmission sentences of Check messages to

application actors where the properties should be verified

14

Case Study (1): Blog Application

• Blog application written using Play! framework
• Properties to be monitored

- No Spam Comments/Posts
- No Inactive Users

15

Simplified Blog Architecture

16

User

Web	application

1.	Clicks	 on	a	post 3.	Returns	the	post	page	with	all	comments

Database

2.	Retrieves	all	comments

Without	monitoring

Properties to be monitored

• No Spam Comments/Posts
- Repetition of same comments/posts should be deleted
- Short-term property checked asynchronously by a

monitoring actor in the same host of blog engine
• No Inactive Users

- Users who have not posted any blog articles for long time
(> 1 year) should be deleted

- Long-term property checked asynchronously by a
monitoring actor in a separate host

17

Checking "No Spam Comments" Property

18

User

Web	application

1.	Clicks	 on	a	post 3.	Returns	the	post	page	with	all	comments

Monitor
A.	Initiates	verification

Database

2.	Retrieves	all	comments
B.	Checks	 for	duplicates

C.	Deletes	duplicates	

Monitor for "No Spam Comments"

19

Case Study (2): Shooting Game

• 2D side scrolling game in
the style of old arcade
games like R-Type
• Spaceship shoots missiles

to destroy all the enemies
coming from the right of
the screen
• Written using Scala Swing

GUI library
• Properties to be monitored

- No cheats!

20

Case Study (2): Shooting Game

• The application runs on top of usual JVM. So the
player can cheat by modifying game-state variables
(e.g., by using JDI)

• The monitor checks that (a) the number of spaceship
lives and (b) the damage of shields are consistent with
game execution

21

Monitor for "Shield Consistency"

22

Pros/Cons of 
Proposed System
• Pros

- Simple, Easy to Use
• No need to learn dedicated DSL  

 or logical notations
• Can be integrated as a normal Scala library

- No JVM modification, No code transformation
- Can cover most of internal/distributed properties
• Cons

- No correctness guarantee
• The monitoring module should be programmed to represent the

properties to be monitored
- No support for complex properties

23

Hey! Should I learn yet
another DSL?

Microbenchmarking

• Calculated over 1200 computations of factorials of all
numbers between 1 and 100 and monitoring the
correctness of results (no mitigation)
• Results

- Average runtime overhead of 15%
- Only 8% of the cases causing more than a 5% overhead
- Higher variance with the monitored program

24

Data	considered Mean Variance

Test	program	outputs 623.3	ms 1.4

Monitored	program	outputs 715.3	ms 2.7

Future Work

• The mechanism to support building correct properties
- type based property description
• The type-safety enforced by the module could be improved upon

for further convenience for the programmer
- library of common properties
• Avoid bypassing

- Inserting checking sentences just before runtime
• e.g., Dynamic AOP, Reflection

- Using "Software Diversity" mechanism
• Justification

- Theoretical side
- Practical side

25

Conclusion

• We developed an efficient and simple runtime
monitoring module for Scala/Akka applications based
on the Actor model
- Properties are written as Scala code
- Asynchronous/Distributed Monitoring and Mitigation

• Case Study
- Blog using Play! Framework
• no spam (no duplicate posts + comments)
• no inactive users

- A Desktop Shooting Game
• no cheats

• Good results on the micro-benchmark
26

