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About This Talk

• Introduces a library-based approach to runtime-
monitoring for actor-based systems
• Two case studies to evaluate the proposal

• Talk outline
- Runtime Verification/Monitoring
- Motivation: GPL/Library-based Approach
- Monitoring Module for Scala/Akka
- Case Study
- Conclusion
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Runtime Monitoring/Verification

• "A computing system analysis and execution approach 
based on extracting information from a running system 
and using it to detect and possibly react to observed 
behaviors satisfying or violating certain properties"
• From http://fsl.cs.illinois.edu/index.php/Runtime_Verification

• A kind of 'light-weight' formal methods
- Bridging the gap of (static) verification and testing
• RM/RV can deal only with finite execution traces

- Properties are usually specified in a formal notation/DSL
• ex. RE, Büchi Automata, LTL, PT-LTL, PT-DTL
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PT-LTL

• Past-Time Linear Temporal Logic [Manna et al '92]

• Formula

- temporal operators: "previously", "sometime in the past", 
"always in the past", "since"

• Example [Sen et al '04]

- "Whenever action starts to be true, it is the case that start 
was true at some point in the past and since then stop was 
never true"
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�((action ^ �¬action)! (¬stop S start))

F ::=true | false | p | ¬F | F ^ F | F _ F | F ! F |
� F | êF | �F | F S F



PT-DTL

• Past-Time Distributed Temporal Logic [Sen et al '04]

• i-formulae / i-expressions
- Fi, ξi : formula / expression local to process pi
• Subscript indicates that they refers to the local names

• Epistemic formulae / expressions
- @jFj, @jξj : refers to the latest local knowledge of pi about pj
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Fi ::= true | false | P(
�!
⇠i ) | ¬Fi | Fi ^ Fi | Fi _ Fi | Fi ! Fi |

� Fi | êFi | �Fi | Fi S Fi | @ jF j

⇠i ::= c | vi | f (
�!
⇠i ) | @ j⇠ j

�!
⇠i ::= (⇠i, . . . , ⇠i)

K. Sen, A. Vardhan, G. Agha and G. Roşu, "Efficient Decentralized 
Monitoring of Safety in Distributed Systems", ICSE 2004.



Epistemic Formulae/Expressions

• Examples
- @2F2 in p1 at d equals to F2 in p2 at h
- @2ξ2 in p1 at d equals to ξ2 in p2 at h
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Classification of RV/RM

• Property Specification
- General Purpose Languages vs. DSL/Formal Notations
• DSL: External or Embedded

- Imperative vs. Declarative
• Imperative : GPL, Automata
• Declarative: Temporal Logic

• Monitoring & Enforcement (Mitigation)
- Modified Runtime vs. Unmodified Runtime
• Modified : Kernel, VM, Language Runtime, Libraries
• Unmodified : Code Modification/Instrumentation, Reflection

- Synchronous vs. Asynchronous
- Centralized vs. Decentralized
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Our Previous Works on RV/RM

• Runtime Security Monitor for JVM
- Property Specification
• DSL based on Büchi Automata [Watanabe et al, 2003]

- Enforcement Mechanism: Code Instrumentation
- Application to Secure E-Mail System [Shibayama et al, 2003]

• Runtime Monitoring of Information-Flow Properties
• Theoretical Foundation of Information-Flow Property 

Monitoring [Nagatou et al, 2005]
• Application to Detecting Covert Channels [Nagatou et al, 2006]
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About this Work

• Goal
- Provide an easier access to runtime monitoring by 

presenting an easy-to-use, scalable monitoring framework 
that provides developers with a way to dynamically verify 
some important specifications and, in case they are 
violated, with a mitigation mechanism

• Proposed Solution
- Target: Actor-based Applications written in Scala/Akka
- Property Specification: Scala
• Monitor/Worker/Listener Classes
• Checking code embedded in the target applications source
• Monitoring and Enforcement
• Scala library that receives monitoring information as 

asynchronous messages
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The Actor Model

• A concurrent computation model based on 
asynchronous message passing
- Originally invented by  

C. Hewitt in 1970s and  
developed by G. Agha and  
other researchers in 1980-90s.

- Basis of many languages: 
Erlang, Scala (Akka), Pony, etc.

• A system is modeled as a collection of actors that 
communicate with each other only via messages.
- "Shared Nothing": no shared states, no global clock
- No channels (mail address based)
- Dynamic Topology (mail addresses are 1st class)
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Monitoring Modules

• The desired properties of an application are specified 
as a collection of monitoring modules.

• At the runtime, modules check those properties and 
executes some compensation (mitigation) tasks if they 
are violated
- one monitor per property
- asynchronous monitoring (non-blocking)

• Modules are written as Akka actors
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Monitoring Architecture (1)

• Master actor
- Checks whether the 

specified property holds in 
current system state by 
executing the property 
method.

- If it does not, sends the 
arguments for mitigation to 
the listener actor.

• Listener Actor
- Performs compensation 

(mitigation) tasks
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Listener	actor
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Monitoring Architecture (2)

• (Extended) Master Actors
- Creates a pool of workers
- Distributes the work to the 

workers in a round robin 
fashion through a router

- Receives the result message 
from the workers and forwards 
the content to the listener

• Worker Actors
- Executes property method and 

if the property does not hold 
sends the arguments for 
mitigation to the master actor

- Able to check properties in 
parallel independently
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How to Integrate Monitors

• Define Monitors/Workers/Listeners
- Monitors 
• property: S => (Boolean, T) 

- If false the property does not hold and mitigate is executed with T-typed 
element as argument

- If true the property holds and nothing more is done
• mitigate: T => Unit

• Modify the Target Application Code
- Insert transmission sentences of Check messages to 

application actors where the properties should be verified
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Case Study (1): Blog Application

• Blog application written using Play! framework
• Properties to be monitored

- No Spam Comments/Posts
- No Inactive Users
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Simplified Blog Architecture
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User

Web	application

1.	Clicks	 on	a	post 3.	Returns	the	post	page	with	all	comments

Database

2.	Retrieves	all	comments

Without	monitoring



Properties to be monitored

• No Spam Comments/Posts
- Repetition of same comments/posts should be deleted
- Short-term property checked asynchronously by a 

monitoring actor in the same host of blog engine
• No Inactive Users

- Users who have not posted any blog articles for long time 
(> 1 year) should be deleted

- Long-term property checked asynchronously by a 
monitoring actor in a separate host
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Checking "No Spam Comments" Property
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User

Web	application

1.	Clicks	 on	a	post 3.	Returns	the	post	page	with	all	comments

Monitor
A.	Initiates	verification

Database

2.	Retrieves	all	comments
B.	Checks	 for	duplicates

C.	Deletes	duplicates	



Monitor for "No Spam Comments"
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Case Study (2): Shooting Game

• 2D side scrolling game in 
the style of old arcade 
games like R-Type
• Spaceship shoots missiles 

to destroy all the enemies 
coming from the right of 
the screen
• Written using Scala Swing 

GUI library
• Properties to be monitored

- No cheats!
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Case Study (2): Shooting Game

• The application runs on top of usual JVM. So the 
player can cheat by modifying game-state variables 
(e.g., by using JDI)

• The monitor checks that (a) the number of spaceship 
lives and (b) the damage of shields are consistent with 
game execution
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Monitor for "Shield Consistency"
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Pros/Cons of 
Proposed System
• Pros

- Simple, Easy to Use
• No need to learn dedicated DSL  

 or logical notations
• Can be integrated as a normal Scala library

- No JVM modification, No code transformation
- Can cover most of internal/distributed properties
• Cons

- No correctness guarantee
• The monitoring module should be programmed to represent the 

properties to be monitored
- No support for complex properties
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Microbenchmarking

• Calculated over 1200 computations of factorials of all 
numbers between 1 and 100 and monitoring the 
correctness of results (no mitigation)
• Results

- Average runtime overhead of 15%
- Only 8% of the cases causing more than a 5% overhead
- Higher variance with the monitored program
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Data	considered Mean Variance

Test	program	outputs 623.3	ms 1.4

Monitored	program	outputs 715.3	ms 2.7



Future Work

• The mechanism to support building correct properties
- type based property description
• The type-safety enforced by the module could be improved upon 

for further convenience for the programmer
- library of common properties
• Avoid bypassing

- Inserting checking sentences just before runtime
• e.g., Dynamic AOP, Reflection

- Using "Software Diversity" mechanism
• Justification

- Theoretical side
- Practical side
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Conclusion

• We developed an efficient and simple runtime 
monitoring module for Scala/Akka applications based 
on the Actor model
- Properties are written as Scala code
- Asynchronous/Distributed Monitoring and Mitigation

• Case Study
- Blog using Play! Framework
• no spam (no duplicate posts + comments)
• no inactive users

- A Desktop Shooting Game
• no cheats

• Good results on the micro-benchmark
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