
Reactive Reflection in an FRP Language for
Small-Scale Embedded Systems

Takuo Watanabe
Department of Computer Science
Tokyo Institute of Technology

takuo@acm.org

Abstract
This paper introduces a reflective functional reactive pro-
gramming language designed for resource-constrained em-
bedded systems. Using the reflection mechanism provided
by the language, a programmodule can observe or modify its
execution process via time-varying values that are connected
to the internal of the metalevel of the module. Thus reflective
operations are also reactive and described in a declarative
manner. An example shows how the mechanism can realize
an adaptive runtime that reduces the power consumption of
a small robot.

CCS Concepts • Software and its engineering→ Func-
tional languages; Data flow languages; • Computer sys-
tems organization → Embedded software;

Keywords Functional Reactive Programming, Reflection,
Embedded Systems
ACM Reference Format:
Takuo Watanabe. 2017. Reactive Reflection in an FRP Language for
Small-Scale Embedded Systems. Presented at Workshop on Meta-
Programming Techniques and Reflection (Meta’17). 5 pages.

1 Introduction
Functional Reactive Programming (FRP)[1–4] is a program-
ming paradigm for reactive systems based on the functional
(declarative) abstractions of time-varying values and sequences
of events. FRP has been actively studied and recognized to
be promising for various kinds of reactive systems including
robots[3, 4]. This suggests that FRP can be useful for other
embedded systems in general. However, with a few excep-
tions, the majority of the FRP (especially pure-FRP1) systems
developed so far are Haskell-based, and therefore they re-
quire substantial runtime resources. Hence, it is virtually
impossible to run such FRP systems on resource-constrained
platforms.
We designed and developed a pure-FRP language Emfrp

for small-scale embedded systems[5]. The term small-scale
1FRP based on purely functional languages

This work is licensed under Creative Commons Attribution-NoDerivatives
4.0 International (CC BY-ND 4.0).
Meta’17, October 22, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s).

here indicates that the target platforms of this language are
not powerful enough to run conventional operating sys-
tems such as Linux. An Emfrp program can be represented
as a DAG whose nodes and edges respectively correspond
to time-varying values and their dependencies. The DAG is
constructed at compile-time and never change at runtime. Al-
though this static construction guarantees the predictability
of the amount of the runtime memory, it loses the flexibility
of realizing adaptive behaviors at runtime.

To provide a certain degree of flexibility and adaptability
to the statically designed runtime system of the language, we
designed a reflection mechanism for Emfrp and discuss its
use in advance of actual implementation[6]. The proposed
mechanism can provide a high-level and controlled access
to the internal of the language runtime via time-varying
values. The distinctive characteristic of our approach is that
the reflective operations are also reactive.
This work-in-progress paper presents our current proto-

type implementation of Xfrp, a reflective extension of Emfrp,
with an example use of its reflection mechanism.

2 Overview of Xfrp
Xfrp is a reflective extension of Emfrp[5], a purely func-
tional reactive programming language designed for resource-
constrained embedded systems. This section presents the
basic (non-reflective) features of the language with an exam-
ple followed by the execution model of the language.

2.1 Basics
An Xfrp program consists of one or more modules. Listing 1
is an example Xfrp module for a simple robot controller2. It
runs on Pololu Zumo 32U4 Robot3 (Figure 1), a small (about
10cm × 10cm) tracked robot having two motors with rota-
tion encoders, an accelerometer and a gyroscope. It is solely
controlled by an on-board ATmega32U4 (8-bit AVR micro-
controller with 32KB flash memory and 2.5KB RAM).
The controller reads data from an inertial sensor (gyro-

scope) to detect when the robot is being rotated. It controls
the pair of motors to cancel the rotation. As a result, the
robot keeps its direction.

2This example is adapted from an existing example for Pololu Zumo 32U4
Robot. https://github.com/pololu/zumo-32u4-arduino-library
3https://www.pololu.com/category/170/zumo-32u4-robot

1

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://github.com/pololu/zumo-32u4-arduino-library
https://www.pololu.com/category/170/zumo-32u4-robot

Meta’17, October 22, 2017, Vancouver, Canada Takuo Watanabe

1 module RotResist
2 in gyroZ : Int, # gyroscope (z−axis)
3 t : Int = 0 # current time (usec)
4 out motorL : Int, # l e f t motor
5 motorR : Int # right motor
6 use Std
7

8 # This function i s used to constrain the speed of
9 # the motors to be between −maxSpeed and maxSpeed
10 const maxSpeed = 400
11 fun motorSpeed(s) = min(max(s, -maxSpeed), maxSpeed)
12

13 # PD−control parameters
14 const kp = 11930465 / 1000
15 const kd = 8
16

17 # time dif ference
18 node dt = t - t@last
19

20 # Calculates the angle to turn from the gyroscope
21 # data and dt
22 node angle = gyroZ * dt * 14680064 / 17578125
23

24 # Calculates the turning speed using a simple
25 # PD−control method .
26 node turn = motorSpeed(-angle / kp - gyroZ / kd)
27

28 # Controls the motors
29 node motorL = -turn
30 node motorR = turn

Listing 1. Rotation Resistant Robot Controller

Figure 1. Zumo 32U4

A module definition con-
tains a single module header
followed by one or more
type, constant, function or
node definitions used in the
module. In Listing 1, the
module header (lines 1–6)
defines the module name
(RotResist), then declares
two input nodes (gyroZ and
t) and two output nodes
(motorL and motorR), and

specifies the library module (Std) used in this module.
The rest of the module (lines 8–30) consists of the defini-

tions of three constants (maxSpeed, kp and ka), one function
(motorSpeed) and five nodes (dt, angle, turn, motorL, and
motorR). A node definition looks like

node n = e or node init[c] n = e

where n is the node name and e is an expression that de-
scribes the (time-varying) value of the node. The optional
init[c] specifies the constant c as the initial value of the
node. Note that if e contains another node namem, we say

gyroZ

t

turn

angle

gyroscope

clock

node present dependency

external device reference
past dependency

RotResist

dt

motorL

motorR

M

M

motor

motor

Figure 2. Graph Representation of Listing 1

that n refers tom and hence n depends onm. While the value
ofm changes over time, the value of n varies also.
Xfrp supports three kinds of nodes: input, output and in-

ternal. Each input or output node has a connection to an
external device (or a system entity), while an internal node
has no such connection. In the example, gyroZ and t are
input nodes connected to the gyroscope and system clock,
respectively. Their values represent the current motion data
and time. The internal nodes dt (line 18), angle (line 22)
and turn (line 26) respectively express the time difference
(elapsed time from the last iteration), the angle of the current
turn, and the speed of the motor.
The definition of dt has an expression t@last, which

refers to the value of t at the “previous moment” — the value
evaluated in the previous iteration (See Section 2.2).

2.2 Execution Model
An Xfrp module can be represented as a directed graph
whose nodes and edges correspond to time-varying val-
ues and their dependencies respectively. Figure 2 shows the
graph representation of Listing 1, which consists of seven
nodes and eight edges.
We categorize the edges (dependencies) into two kinds:

past and present. A past edge from nodem to n means that n
hasm@last in its definition. A present edge from nodem to
n, in contrast, means that n directly refers tom. In Figure 2,
the dotted arrow line from t to dt is the past edge. All other
edges are present.

By removing the past edges from the graph representation
of an arbitrary Xfrp program, we should obtain a directed-
acyclic graph (DAG). The topological sorting on the DAG
gives a sequence of the nodes. For Figure 2, we have: gyroZ,
t, dt, angle, turn , motorL, motorR.

The Xfrp runtime system updates the values of the nodes
by repeatedly evaluating the elements of the sequence. We
call a single evaluation cycle an iteration. The order of up-
dates (scheduling) in an iteration must obey the partial order
determined by the above mentioned DAG.

2

Reactive Reflection in an FRP Language Meta’17, October 22, 2017, Vancouver, Canada

in_
world

out_
world

metamodule

state of the base-level
module represented by

in_world

state of the base-level
module represented by

out_world

single node
update

reification

Figure 3. Metamodule

The value of n@last is the value of n in the last iteration.
At the first iteration, where no nodes have their previous
values, n@last refers to the initial value c specified with
init[c] in the definition of n. In this example, since t is an
input node, its initial value is specified at the header section
of the module (line 3).
The Xfrp compiler translates a module definition into a

platform-independent C program that repeatedly updates
the values of nodes. The generated code is usually linked
with some platform-dependent code (runtime system) to be
deployed on an actual device.

3 Reflection Mechanism
To provide a high-level representation of the Xfrp runtime
system, we introduce the notion ofmetamodule that governs
an application level (base-level) module. Figure 3 depicts
the concept. A metamodule contains at least one input node
(inWorld) and one output node (outWorld), each of which
represents an intermediate state of its corresponding base-
level module.

Listing 2 shows the vanilla metamodule that expresses the
basic execution model of Xfrp. Specifically, this module plays
the role of the runtime function that repeatedly updates the
node values.

Two nodes inWorld and outWorld represent an interme-
diate state of an iteration in the base-level module. The type
of them (World) is defined as a pair type

type World = (Seq[Node], Seq[Node])

where Seq[Node] is the sequence type whose element type
is Node. In the current version of Xfrp, functions using para-
metric types like this require explicit type parameters.

The elements of World respectively represent the nodes to
be updated and the nodes already updated. The order of the
nodes in the sequences should obey the order of the nodes in

1 module VanillaMeta
2 in inWorld : World
3 out outWorld : World
4 use Reflect
5

6 node outWorld =
7 let (xs, ys) = inWorld in
8 if isEmpty[Node](xs)
9 # Finishes a s ingle base−l eve l i t e ra t ion
10 then (ys, empty[Node]())
11 # Updates a base−l eve l node
12 else let (x, xs') = dequeue[Node](xs) in
13 let (n, p, c, e) = x in
14 case eval(e, xs', ys) of
15 # Updates the current value of the node
16 Just(v) ->
17 (xs', enqueue[Node](ys, (n, c, v, e)));
18 # Does not update i f evaluation f a i l s
19 Nothing ->
20 (xs', enqueue[Node](ys, (n, p, c, e)));

Listing 2. Vanilla Metamodule of Xfrp

the dependency graph explained in Section 2.2. A single base-
level iteration starts with (xs, empty[Node]()) and ends
with (empty[Node](), ys) where xs and ys respectively
correspond to the sets of nodes before and after the iteration.

The type of reified nodes is defined as
type Node = (String, Value, Value, Expr)

where String, Value and Expr are types of strings, reified
data values (see next paragraph) and expressions. Thus, a
node is represented as a quadruple (n, p, c, e) where n,
p, c and e are the name, the last (previous) value, the current
value, and the expression (RHS of the definition) of the node
respectively. Values of the type Value represent base-level
values of any data types.

Upon a successful update of a node, the previous cur-
rent value of the node becomes the new last value and the
evaluated value becomes the new current value (Line 17 in
Listing 2). If the evaluation of the node fails, the current state
of the node is just used as the result (line 20 in Listing 2)

4 Example: Robot Facing Uphill
This section describes an example using reflective features
of Xfrp. The example, also runs on Zumo 32U4 Robot, uses
the accelerometer to detect whether the robot is on a slanted
surface. If it is on a slanted surface, then it turns itself to
face uphill. It also uses the motor-rotation encoders to avoid
rolling down the surface. Listing 3 show the controller mod-
ule of the robot.

In line 8 of this example, a Boolean output node needsTurn
is declared to be related to meta(isBusy). The notation ex-
presses that the value of needsTurn can also be referred as

3

Meta’17, October 22, 2017, Vancouver, Canada Takuo Watanabe

1 module FaceUphill
2 in accX : Int, # accelerometer (x−axis)
3 accY : Int, # accelerometer (y−axis)
4 encL : Int, # l e f t motor rotation encoder
5 encR : Int # right motor rotation encoder
6 out motorL : Int, # l e f t motor
7 motorR : Int, # right motor
8 needsTurn : Bool = meta(isBusy)
9 # Connected to isBusy of the metamodule
10 use Std
11 meta AdaptiveSpeedMeta
12

13 # This function i s used to constrain the speed of
14 # the motors to be between −maxSpeed and maxSpeed
15 const maxSpeed = 150
16 fun motorSpeed(s) = min(max(s, -maxSpeed), maxSpeed)
17

18 # True i f f the robot i s on a slanted surface .
19 # (inc l ine of more than 5 degrees)
20 node init[False] needsTurn =
21 accX * accX + accY * accY > 1427 * 1427
22

23 # Calculates the turning speed from the y−axis value
24 # of the accelerometer . I t wi l l be 0 i f the inc l ine
25 # i s not s igni f i cant .
26 node turn = if needsTurn then accY / 16 else 0
27

28 # Calculates the forwarding speed from the encoder
29 # values .
30 node forward = -(encL + encR)
31

32 node motorL = motorSpeed(forward - turn)
33 node motorR = motorSpeed(forward + turn)

Listing 3. Facing Uphill Robot

the value of isBusy of the metamodule AdaptiveSpeedMeta
(Listing 4). This inter-level node connection is the central
mechanism of reflection in Xfrp.

The metamodule AdaptiveSpeedMeta has an extra input
node isBusy and an extra output node iterSleepMs as well
as inWorld and outWorld. As described above, isBusy refers
to the value of the node needsTurn in the base-level. The
node iterSleepMs represents the sleep time between iter-
ations. The larger the value of the node is, the slower the
execution of the system becomes and the smaller the power
consumption will be.
In this example, while the robot is on a level plane, it

will slow itself down and lower the power consumption by
sleeping 10ms between iterations. Once the robot finds it-
self on a slanted plane, needsTurn in the base-level module
becomes true. This implies that isBusy is true in the meta-
module because of the inter-level node connection. Thus
the system runs as fast as possible by changing the value of
iterSleepMs to zero and keeps the state for 1000 iterations.

1 module AdaptiveSpeedMeta
2 in inWorld : World,
3 isBusy : Bool # busyness of the base−l eve l
4 out outWorld : World,
5 iterSleepMs : Int # sleep time between i t e ra t i ons
6 use Reflect
7

8 # Counts the i t e ra t i ons . Resets to 0 when detect ing
9 # the fa l l ing edge of isBusy .
10 node init[0] count =
11 if !isBusy && isBusy@last # fa l l ing edge
12 then 0
13 else count@last + 1
14

15 # Keeps ful l−speed i t e ra t i ons while isBusy or 1000
16 # i t e ra t i ons af ter isBusy becomes False . After that ,
17 # 10ms sleep i s inserted at each i t e ra t ion .
18 node iterSleepMs =
19 if isBusy || count < 1000 then 0 else 10
20

21 # Same as VanillaMeta
22 node outWorld = ...

Listing 4. Adaptive Speed Metamodule

The runtime system used with this metamodule should
insert specified sleep time between iterations. Such behavior
can be implemented for example by inserting a sentence
usleep(iterSleepMs * 1000); to the place before the in-
vocation of the iteration process.

5 Concluding Remark
This work-in-progress paper presents a simple reflection
mechanism for Xfrp, a reflective functional reactive program-
ming language designed for resource-constrained embedded
systems. The main purpose of introducing reflection is to
provide a certain degree of flexibility and adaptability to the
statically designed runtime system of the language.
The proposed reflection mechanism opens up the inter-

nals of a runtime system via nodes (time-varying values)
connected to nodes in the metamodules. The mechanism
based on the inter-level node connection can be classified as a
behavioral reflection in a sense that the base-level module
can modify its own behavior by affecting the execution of
the metamodule via connected nodes.

The future research direction should focus on the investi-
gation of the use of the proposed reflection mechanism as
well as performance evaluation.

Acknowledgments
This work is supported in part by JSPS KAKENHI Grant
No. 15K00089.

4

Reactive Reflection in an FRP Language Meta’17, October 22, 2017, Vancouver, Canada

References
[1] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional

Reactive Programming for GUIs. In 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2013). ACM,
411–422. https://doi.org/10.1145/2499370.2462161

[2] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In
2nd ACM SIGPLAN International Conference on Functional Programming
(ICFP 1997). ACM, 263–273. https://doi.org/10.1145/258949.258973

[3] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003.
Arrows, Robots, and Functional Reactive Programming. In Advanced
Functional Programming. Lecture Notes in Computer Science, Vol. 2638.
Springer-Verlag, 159–187. https://doi.org/10.1007/978-3-540-44833-4_6

[4] Izzet Pembeci, Henrik Nilsson, and Gregory Hager. 2002. Functional
Reactive Robotics: An Exercise in Principled Integration of Domain-
Specific Languages. In 4th International Conrefernce on Principles and
Practice of Declarative Programming (PPDP 2002). ACM, 168–179. https:
//doi.org/10.1145/571157.571174

[5] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: A Functional
Reactive Programming Language for Small-Scale Embedded Systems.
In Modularity 2016 Constrained and Reactive Objects Workshop (CROW
2016). ACM, 36–44. https://doi.org/10.1145/2892664.2892670

[6] Takuo Watanabe and Kensuke Sawada. 2017. Towards Reflection in
an FRP Language for Small-Scale Embedded Systems. In Companion to
the 1st International Conference on the Art, Science and Engineering of
Programming (Programming 2017). ACM, Article 10, 10:1–10:6 pages.
https://doi.org/10.1145/3079368.3079387

5

https://doi.org/10.1145/2499370.2462161
https://doi.org/10.1145/258949.258973
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1145/571157.571174
https://doi.org/10.1145/571157.571174
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/3079368.3079387

	Abstract
	1 Introduction
	2 Overview of Xfrp
	2.1 Basics
	2.2 Execution Model

	3 Reflection Mechanism
	4 Example: Robot Facing Uphill
	5 Concluding Remark
	Acknowledgments
	References

