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Abstract
The two main characteristics of the Actor model are asyn-
chronous message passing and dynamic system topology.
The latter relies on the on-the-fly creation of actor names that
often complicates the formal treatment of systems described
in the Actor model. In this paper, we introduce Actario, a for-
malization of the Actor model in Coq. Actario incorporates
a name creation mechanism that is formally proved to gen-
erate a consistent set of actor names. The mechanism helps
proper handling of names in modeling and reasoning about
actor-based systems. Actario also provides a code extraction
mechanism that generates Erlang programs.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Mechanical verification

General Terms Actors, Formal Models

Keywords Actor Model, Formalization, Actario, Coq, Er-
lang

1. Introduction
The Actor model[3] is a kind of concurrent computation
model, in which a system is expressed as a collection of au-
tonomous computing entities called actors that communicate
each other only with asynchronous messages. On receiving
a message, an actor may (1) send messages to other actors
(or itself) whose names are known to the sender, (2) create
new actors and (3) change its behavior for the next message.

Starting from the 1970s, the Actor model and its varia-
tions such as concurrent objects[15] have a long research
history. They are today regarded as popular high-level ab-
stractions for concurrent and parallel programming used
in some industrial strength language and libraries such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AGERE!@SPLASH, Oct., 2015, Pittsburgh, PA, USA.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Erlang[7], Scala[10] and Akka[4]. Because of this situation,
establishing a mechanized formal verification method for
actor-based systems is a pressing issue.

Several methods and systems for formally verifying
actor-based systems have been presented recently. Rebeca[11]
is a modeling language that allows model-checking. For de-
ductive verification using proof assistants, formalizations
using Athena[9] and Coq[8] have been presented.

A name1 in the Actor model is a unique conceptual loca-
tion associated with each actor. The concept of name unique-
ness denotes that each name uniquely refers an actor and
each actor should be referred by a single name. In the im-
plementations of actor systems including Erlang, Scala, and
Akka, naming of actors is implicit; we don’t need to manu-
ally assign a fresh name to a newly created actor. The name
uniquness may be broken if the naming is explicit in com-
plex systems. Implicit naming, however, might complicate
the formal treatment of actor-based systems. Thus, some for-
malization adopts explicit naming.

In this paper, we propose Actario[1], a Coq framework
for implementing and verifying actor-based systems. The
framework (1) supports Erlang-like notation for describing
an actor system, (2) allows verifying desired properties of
the system using the proof mechanism in Coq, and (3) gen-
erates executable Erlang code from the system description.

To be close to realistic actor languages and libraries, we
designed Actario to support implicit naming. This is the
main difference between our formalization and formaliza-
tions using Athena[9] or Coq[8]. The naming mechanism
behind the scene is formally proved to satisfy the name
uniqueness. We also proved other properties including the
persistence of actors and messages. The proof scripts of
these properties are available in the GitHub repository of
Actario[1].

The layout of the rest of this paper is as follows. The next
section describes the overview of Actario. In Section 3, we
give the operational semantics of the Actor model formal-
ized in Actario. Section 4 outlines the proof of the unique-
ness property on dynamically generated names. In Section 5,
we discuss fairness properties formalized in Actario. The
code extraction mechanism is described in Section 6. Finally,

1 The term mail address is used in some other literature.



Section 7 overviews related work and Section 8 concludes
the paper.

2. Overview of Actario
2.1 Programming in Actario
Actario is a Coq framework for defining and verifying actor-
based systems. A typical workflow using Actario is as fol-
lows.

1. Describe an actor system using types and notations de-
fined in the framework.

2. Specify and verify desired properties of the system.

3. Extract the Erlang version of the system using the code
extraction mechanism of Coq.

Note that Actario does not provide a dedicated language for
describing actor systems. The framework offers a set of Coq
vocabularies (types and notations described in Section 2.2)
for that purpose.

Example: Recursive Factorial System We use a simple
example to illustrate a system description in Actario. Fig-
ure 1 shows the definition of an actor system that implements
the continuation-passing style factorial function adapted
from [3]. In this definition, the function factorial_system
sets up a system that initially consists of a single factorial

actor whose behavior is defined as factorial_behv. The
actor can receive a tuple of a natural number and the name
of a customer actor (cust) that is intended to receive the
result. If the first component of tuple is more than zero, i.e.,
it matches the successor pattern S n, the actor creates a new
continuation actor (cont) and recursively sends itself a pair
of n and cont. The behavior of continuation actors is speci-
fied as factorial_cont_behv.

2.2 Types and Notations
2.2.1 Types
Figure 2 shows the inductively defined type of messages
delivered among actors, each of whose constructors corre-
sponds to a kind of messages. In the current version of Ac-
tario, a message may be empty, an actor name, a value of
basic types (Boolean, natural number or string), or a tuple of
two messages.

Figure 3 defines two mutually coinductive types: actions
and behavior. They specify sequences of actions per-

formed by actors and behaviors of actors respectively. Each
constructor of actions corresponds to a single action em-
bedded in an action sequence as follows.

new b f creates a new actor with initial behavior b and ap-
plies f to the name of the created actor. Then continues
to the action sequence that f returns.

send n m α sends message m to the actor with name n and
then continues to action sequence α.

1 Definition factorial_cont_behv (val : nat)

2 (cust : name) :=

3 receive (fun msg ⇒
4 match msg with

5 | nat_msg arg ⇒
6 cust ! nat_msg (val * arg);

7 become empty_behv

8 | _ ⇒ become empty_behv

9 end).

10

11 CoFixpoint factorial_behv :=

12 receive (fun msg ⇒
13 match msg with

14 | tuple_msg (nat_msg 0) (name_msg cust) ⇒
15 cust ! nat_msg 1;

16 become factorial_behv

17 | tuple_msg (nat_msg (S n))

18 (name_msg cust) ⇒
19 cont ← new

20 (factorial_cont_behv (S n) cust);

21 me ← self;

22 me ! tuple_msg (nat_msg n)

23 (name_msg cont);

24 become factorial_behv

25 | _ ⇒ become factorial_behv

26 end).

27

28 Definition factorial_system (n : nat)

29 (cust : name) :=

30 init "factorial" (

31 x ← new factorial_behv;

32 x ! tuple_msg (nat_msg n) (name_msg cust);

33 become empty_behv

34 ).

Figure 1. Recursive Factorial System in Actario

self f retrieves the name of the actor that executes this
action and applies f to it. Then continues to the action
sequence that f returns.

become b sets b as the next behavior of the actor that ex-
ecutes this action. This action should end an action se-
quence.

In the Actor model, an actor persists indefinitely. Thus, as
shown in Figure 1, that a behavior may have become actions
that specify itself or other behaviors eventually recurring
to the original one. The reason for using CoFixpoint and
defining actions and behavior coinductively is to model
such behaviors.

2.2.2 Notations
In addition to the types defined above, Actario provides a
collection of notations (syntactic sugaring) described in Fig-
ure 4. Using the notations, we can write actor behaviors in-
tuitively without being complicated by CPS. Figure 5 com-



1 Inductive message : Set :=

2 | empty_msg : message

3 | name_msg : name → message

4 | str_msg : string → message

5 | nat_msg : nat → message

6 | bool_msg : bool → message

7 | tuple_msg : message → message →
message.

Figure 2. Message Type

1 CoInductive actions : Type :=

2 | new : behavior → (name → actions) →
actions

3 | send : name → message → actions →
actions

4 | self : (name → actions) → actions

5 | become : behavior → actions

6 with behavior : Type :=

7 | receive : (message → actions) →
behavior.

Figure 3. Types for Actions and Behaviors

1 Notation "n ’← ’ ’new’ behv ; cont" :=

2 (new behv (fun n ⇒ cont))

3 (at level 0, cont at level 10).

4 Notation "n ’!’ m ’;’ a" :=

5 (send n m a) (at level 0, a at level 10).

6 Notation "me ’← ’ ’self’ ’;’ cont" :=

7 (self (fun me ⇒ cont))

8 (at level 0, cont at level 10).

Figure 4. Notations for Actions

new b (fun x ⇒
self (fun s ⇒
send x (name_msg s)

(become b′)))

(a) without notations

x ← new b;
s ← self;

x ! (name_msg s);

become b′

(b) with notations

Figure 5. Example Use of Notations

pares the descriptions of a simple action sequence with-
out/with the notations.

1 Inductive name : Set :=

2 | toplevel : string → name

3 | generated : nat → name → name.

Figure 6. name

1 Record actor := {

2 actor_name : name;

3 remaining_actions : actions;

4 next_num : gen_number

5 }.

Figure 7. actor

3. Semantics
In this section, we explain the formalization of the opera-
tional semantics of the Actor model in Actario. First, for
the explanation of formalization of operational semantics,
we describe name type, actor type, in_flight_message
type, and config type. And then, we explain how to formal-
ize the operational semantics in Actario.

3.1 Actor Name
In Actario, actor name is defined as the disjoint sum of the
case of an actor with no parent and the case of an actor
generated by another actor (Figure 6). We call the actors
having no parent top level actor. Top level actor represents
initial actors in the system. And we call the actors generated
by another actor generated actor. The name of a generated
actor consists of the name of parent actor and the number
that the parent actor generated so far. We call the number
generation number. To keep name uniqueness, we introduce
generation number. For more detail about name uniqueness,
see Section 4.

3.2 Actor
We explain how actor is defined in Actario. Actor consists
of its name, sequence of remaining actions, and next gen-
eration number to use in generating next child (Figure 7).
If remaining actions are only become, the actor is ready for
receiving a message.

3.3 Messages in Flight
Next, we define in_flight_message type which repre-
sents messages in flight in the configuration.
in_flight_message consists of the name of the destina-
tion, the name of the sender, and the content of the message
(Figure 8).

3.4 Configuration
configuration represents a snapshot of the actor system. con-
figuration is used to formulate operational semantics of the



1 Record in_flight_message := {

2 to : name;

3 from : name;

4 content : message

5 }.

Figure 8. in flight message

1 Record config := {

2 in_flight_messages :

3 list in_flight_message;

4 actors : list actor

5 }.

Figure 9. config

1 Inductive label :=

2 | Receive (to : name) (from : name)

3 (content : message)

4 | Send (from : name) (to : name)

5 (content : message)

6 | New (child : name)

7 | Self (me : name).

Figure 10. label

Actor model. In Actario, a configuration consists of a list of
actors and a list of messages in flight.

3.5 Transition Label
Actario formulates operational semantics of the Actor model
as labeled transition system, so we define label (Figure 10).
The explanations of each label are as follows.

Receive (to : name) (from : name)

(content : message)

This represents that the actor named to receives the mes-
sage content sent from the actor named from.

Send (from : name) (to : name)

(content : message)

This represents that the actor named from sends the mes-
sage content to the actor named to.

New (child : name)

This represents that the actor named child is generated.
Self (me : name)

This represents that the actor named me gets the name
itself.

c ∈ Configuration = Set(InFlight)× Set(Actor)
a ∈ Actor = Name× Actions× N
n ∈ Name ::= toplevel(s)

| generated(g, n)
m ∈ Message = Name + PrimVal+

Message× · · · ×Message
i ∈ InFlight = Name× Name×Message
b ∈ Behavior = Message→ Actions
α ∈ Actions ::= send(n,m, α)

| new(b, κ)
| self(κ)
| become(b)

l ∈ Label ::= Receive(n, n,m)
| Send(n, n,m)
| New(n)
| Self(n)

κ ∈ Name→ Actions
g ∈ N

Figure 11. Configuration

3.6 Semantics
We formulate operational semantics of the Actor model as
labeled transition system. For the later explanation, we de-
fine the symbols as shown in Figure 11.

The labeled transition system used in Actario is defined
like Figure 12. The explanations for each of transitions are
the followings.

RECEIVE
RECEIVE is the transition for Receive label. The actor
which is ready to receive a message, in other words, the
actor whose remaining actions are only become, receives
a message and generate new remaining actions decided
by the behavior and the content of the message.

SEND
SEND is the transition for Send label. The actor which
want to send a message sends a message, and then the
message is added into messages in flight.

NEW
NEW is the transition for New label. An actor generates
its child actor by the given behavior. And then, do the
followings:
• The child actor is added into the configuration. The

next generation number of child actor is 0.
• The next generation number of the parent actor in-

creases by 1.
• The child actor is ready to receive a message.

SELF
SELF is the transition for Self label. An actor gets the self
name and applies it to the continuation.

The definition in Actario is in Appendix A.



(I ⊎ {(nto, nfrom,m)}, A ∪ {(nto, become(b), g)}) Receive(nto,nfrom,m)⇝ (I, A ∪ {(nto, b(m), g)}) (RECEIVE)

(I, A ∪ {(nfrom, send(nto,m, α), g)}) Send(nfrom,nto,m)⇝ (I ⊎ {(nto, nfrom,m)}, A ∪ {(nfrom, α, g)})
(SEND)

(I,A ∪ {(n, new(b, κ), g)}) New(n′)⇝ (I, A ∪ {(n, κ(n′), g + 1), (n′, become(b), 0)})
where n′ := generated(g, n)

(NEW)

(I, A ∪ {(n, self(κ), g)}) Self(n)⇝ (I,A ∪ {n, κ(n), g}) (SELF)

Figure 12. labeled transition semantics

1 Theorem actor_persistence :

2 ∀ c c’ l n,

3 n \in map actor_name (actors c) →
4 c ~(l)⇝ c’ →
5 n \in map actor_name (actors c’).

Figure 13. Actor Persistence

1 Theorem message_persistence :

2 ∀ c c’ l m (n : nat),

3 n == count_mem m (in_flight_messages c) →
4 c ~(l)⇝ c’ →
5 if l == Receive (to m) (from m)

6 (content m) then

7 count_mem m (in_flight_messages c’)

8 == n.-1

9 else

10 if l == Send (from m) (to m)

11 (content m) then

12 count_mem m (in_flight_messages c’)

13 == n.+1

14 else

15 count_mem m (in_flight_messages c’) == n.

Figure 14. Message Persistence

3.7 Actor Persistence and Message Persistence
In this semantics, actor persistence property (the property
that actors do not disappear) and message persistence prop-
erty (the property that messages in flight do not disappear
except of receiving) are formally proved. Each of the defi-
nitions is shown in Figure 13 and Figure 14. The number of
lines of the proofs is less than 100 lines in Actario 2.

2 https://github.com/amutake/actario/blob/

d9e5084c87e7e0bc630ffa0f96b0b3b49d65fa9a/src/

persistence.v

4. Name Uniqueness
In programming languages or libraries providing the Actor
model such as Erlang or Akka, the system automatically
generates actors with fresh names without specifying the
name explicitly by the programmer. In Actario, the propo-
sition that all actor names in the configuration are not dupli-
cate by any transitions is proved.

To prove, we define an invariant about actor names pre-
served between any transitions. It is named trans invariant.
The trans invariant consists of the following three predicates
for configuration.

trans invariant(c) :=
chain(c) ∧ gen fresh(c) ∧ no dup(c)

The brief explanations of chain, gen fresh, and no dup

are followings:

chain

For each actor in the configuration, if the actor is gener-
ated by another actor, then the parent actor is also in the
configuration.

gen fresh

For each actor in the configuration, actor name genereted
by the actor in the next is fresh.

no dup

For all actor name in the configuration are unique.

4.1 Functions
Before starting the explanation and the proof, we define
some functions used in this section.

actors : Configuration→ Set(Actor)
actors returns the set of actors in the given configura-
tion.

parent : Actor→ Actor
parent returns the parent actor of the given actor. If the
given actor is toplevel actor, the function returns nothing.

gen number : Actor→ N
gen number returns generated number of the name of



the given actor. If the given actor is toplevel actor, the
function returns nothing.

next number : Actor→ N
next number returns next generation number of the
given actor.

name : Actor→ Name
name returns the name of the given actor.

names : Set(Actor)→ Set(Name)
names returns names of the given set of actors.

4.2 Chain Property
We define a predicate of configuration, called chain. chain
is the predicate that, for each actor in the given configuration,
if it is generated by another actor, the parent actor is also in
the configuration. chain is defined as the following.

chain(c) :=
∀a ∈ actors(c), ∀p, p = parent(a)⇒ p ∈ actors(c)

Then, we can prove chain preservation property that
chain is preserved between any transitions. The proof is
by case analysis on the label. chain is decided by only
actor names, and the transition which have a possibility to
change the names in the configuration is only NEW transi-
tion. Therefore, we consider only the case of NEW transition.

LEMMA 1. chain preservation

∀c, c′ ∈ Configuration, ∀l ∈ Label,

chain(c) ∧ c
l⇝ c′ ⇒ chain(c′)

4.3 Gen Fresh Property
We define gen fresh predicate that, for each actor in the
configuration, the name of its child is always fresh. The
definition of gen fresh is complicated a little. We translate
the proposition that next generated name is fresh to the
following.

gen fresh(c) :=
∀a ∈ actors(c), ∀p ∈ actors(c), p = parent(a)⇒

gen number(a) < next number(p)

It is guaranteed that the actor name generated in the next
is fresh if satisfying gen fresh predicate by the relation
of next generation numbers and actor names. However, the
actor name generated after the next is not always fresh name.
For example, if there are two actors (A and B) that have the
same name and the same next generation number and actor
A generates a child actor and actor B generates a child actor,
although gen fresh holds, these child actors have the same
name. Furthermore, if the parent of the actor A does not exist
in the configuration and the parent of the parent exists in the
configuration, and the parent of the parent actor generates an
actor and it also generates an actor, then the name is possible
to have the same as A’s one.

Thus, to prove gen fresh preservation proposition that
gen fresh is preserved between transitions, it is necessary
to use chain and no dup as hypotheses.

LEMMA 2. gen fresh preservation

∀c, c′ ∈ Configuration,∀l ∈ Label,

chain(c) ∧ gen fresh(c) ∧ no dup(c) ∧ c
l⇝ c′ ⇒

gen fresh(c′)

4.4 No Dup Property
We define no dup predicate that all actor names in the given
configuration are unique. This is the property we have to
prove. no dup is defined as the following.

no dup(c) :=
∀a ∈ actors(c), name(a) /∈ names(actors(c) \ {a})

We proved no dup preservation property defined as the
following. It represents that if the actor names in the config-
uration is not duplicate and the next generated actor name is
fresh, then no dup holds in the next configuration.

LEMMA 3. no dup preservation

∀c, c′ ∈ Configuration,∀l ∈ Label,

gen fresh(c) ∧ no dup(c) ∧ c
l⇝ c′ ⇒ no dup(c′)

4.5 Proof of Name Uniqueness Property
Then, we start to prove name uniqueness. First, we prove
trans invariant preservation that trans invariant is preserved
between transitions. This is obvious by chain preservation,
gen fresh preservation and no dup preservation.

LEMMA 4. trans invariant preservation

∀c, c′ ∈ Configuration, ∀l ∈ Label,

trans invariant(c) ∧ c
l⇝ c′ ⇒

trans invariant(c′)

Next, we prove that if trans invariant holds in initial con-
figuration, trans invariant holds after arbitrary transitions.

LEMMA 5. trans invariant preservation star

∀c, c′ ∈ Configuration, ∀l ∈ Label,

trans invariant(c) ∧ c
l⇝ ⋆ c′ ⇒

trans invariant(c′)

c
l⇝ ⋆ c′ represents reflexive transitive closure of transition.

The proof is by induction of reflexive transitive closure of
transition and trans invariant preservation.

Finally, we can prove name uniqueness.

THEOREM 1. name uniqueness

∀c, c′ ∈ Configuration, ∀l ∈ Label,

trans invariant(c) ∧ c
l⇝ ⋆ c′ ⇒ no dup(c′)

This is obvious by trans invariant preservation star because
no dup is in trans invariant.



5. Fairness
fairness is a property that reception of a message does not
delay infinitely. There are two variants of fairness property,
weak fairness and strong fairness. Weak fairness is that if
an actor is infinitely always ready to receive the message,
the message is eventually received. Strong fairness is that if
an actor is infinitely often ready to receive the message, the
message is eventually received. The Actor model satisfies
strong fairness. We have not proved any properties using
strong fairness yet, but for a case study, we explain how to
define strong fairness in Actario.

5.1 Transition Path
Generally, fairness is represented in using operators of tem-
poral logic. We have to encode temporal logic because Coq
does not support temporal logic. We use transition path,
which represents transition sequence of configuration, to de-
fine fairness as a predicate of transition path. This method is
used in Applπ [2].

We define transition path as a function of N to option

config. In this definition, N represents the number of tran-
sitions from initial configuration and the reason why the re-
turn value is wrapped with option is that it may be no more
transitions.

1 Definition path := nat → option config.

And we define the predicate that the given path is correct
transition path.

1 Definition is_transition_path

2 (p : path) : Prop :=

3 ∀ n,

4 (∀ c, p n = Some c →
5 (∃ c’ l, p (S n) = Some c’ /\

6 c ~(l)⇝ c’) \/

7 p (S n) = None) /\

8 (p n = None → p (S n) = None).

5.2 Enabled
We define the predicate that the transition from the given
configuration with the given label is possible, called enabled.
In Actario, enabled is defined as there exists a configura-
tion after transitioning from the configuration with the label,
as follows.

1 Definition enabled (c : config)

2 (l : label) : Prop :=

3 ∃ c’, c ~(l)⇝ c’.

5.3 Infinitely Often Enabled
We define the predicate that the transition is infinitely of-
ten enabled in the transition path. It is named infinitely

often enabled.

1 Definition infinitely_often_enabled

2 (l : label) (p : path) : Prop :=

3 ∀ n c, p n = Some c →
4 enabled c l →
5 ∃ m c’, m > n /\

6 p m = Some c’ /\

7 enabled c’ l.

5.4 Eventually Processed
We define eventually processed that is the predicate of
label and transition path. It represents that the transition with
the label is processed eventually in the path. It is defined as
follows.

1 Definition eventually_processed

2 (l : label) (p : path) : Prop :=

3 ∃ n c c’,

4 p n = Some c /\

5 p (S n) = Some c’ /\

6 c ~(l)⇝ c’.

5.5 Definition of Fairness
Then we can define fairness predicate for transition
path. For the given transition path and for each label, if
infinitely often enabled holds, then eventually

processed holds. is postfix of predicate is used for
representing ’infinite’. If is postfix of is not used, the
transition may not be processed after the transition is pro-
cessed although the transition is processed in whole the path.
To prevent it, if inifinitely often enabled holds then
eventually processed holds for arbitrary postfix path by
using is postfix path.

1 Definition is_postfix_of

2 (p’ p : path) : Prop :=

3 ∃ n, (∀ m, p’ m = p (m + n)).

4

5 Definition fairness : Prop :=

6 ∀ p p’, is_postfix_of p’ p →
7 (∀ l,

8 infinitely_often_enabled l p’ →
9 eventually_processed l p’).

6. Extraction
Extraction is a Coq feature which enables to convert Coq
programs to the programs of other languages. Normal Coq
can extract programs to OCaml, Haskell, and Scheme. If



1 (* Inductive nat := *)

2 (* | O : nat *)

3 (* | S : nat → nat. *)

4

5 O (* ⇒ {o} *)

6 S (S (S O)) (* ⇒ {s, {s, {s, o}}} *)

Figure 15. example of extraction of algebraic data types

1 CoFixpoint behvA :=

2 receive (fun msg ⇒
3 match msg with

4 | name_msg sender ⇒
5 me ← self;

6 sender ! name_msg me;

7 become behvA

8 | _ ⇒
9 child ← new behvB;

10 child ! msg;

11 become behvA

12 end)

Figure 16. Extraction example: Actario code

we want to extract to other languages or use custom ex-
traction algorithm, we have to implement it as plugins or
patches. Actario has custom extraction mechanism for the
programs using Actario. It can extract to Erlang. In Actario,
ActorExtraction command is defined for extracting actor
systems. It is used like traditional Extraction command.

6.1 Data Types
Values of algebraic data types are extracted to a tuple with
the label. Value constructor is extracted to a label, and argu-
ments are extracted to the second and the following elements
of the tuple. Figure 15 is an example of extraction of the nat-
ural number type.

However, actions of actors, for example, send, new, self,
become and behavior are implemented as value construc-
tor of actions and behavior type We handle these con-
structors as special to generate the corresponding syntax of
Erlang.

For example, Actario code shown in Figure 16 is ex-
tracted to Erlang code shown in Figure 17.

6.2 Name
In Actario, a programmer does not make actor names from
constructors, so that all of actor names are in variables.
Therefore, all of actor names in extracted code are variables.
These variables are bound by values of name type in Actario,
but in Erlang, these variables are bound by process ids.

1 behvA() →
2 receive Msg → case Msg of

3 {name_msg, Sender} →
4 Me = self(),

5 Sender ! {name_msg, Me},

6 behvA()

7 _ →
8 Child = spawn(fun() → behvB() end),

9 Child ! Msg

10 behvA()

11 end.

Figure 17. Extraction example: Erlang code

6.3 Execution
The program extracted by Actario is impossible to execute
by itself. So Actario’s programmers have to write executor to
execute the extracted Actor system in Erlang. For example,
we consider factorial system described in Section 2.

1 Definition factorial_system (n : nat)

2 (parent : name) : config :=

3 init "factorial" (

4 x ← new factorial_behv;

5 x ! tuple_msg (nat_msg n)

6 (name_msg parent);

7 become empty_behv

8 ).

factorial_system is extracted to the following Erlang
code.

1 factorial_system(N, Parent) →
2 X = spawn(fun() →
3 factorial_behv()

4 end),

5 X ! {tuple_msg, {nat_msg, N},

6 {name_msg, Parent}},

7 empty_behv().

To execute this, we have to write executor like Figure 18.
nat2int and int2nat are auxiliary functions for convert-
ing Coq’s natural number and Erlang’s integer.

6.4 Future Work for Erlang Extraction
Currently, it is not proved that the extraction mechanism
does not change the meanings of Actario programs and Er-
lang programs and properties such as name uniqueness. In
order to show these properties, we have to formalize Erlang
in Coq and extraction mechanism, write extraction mecha-
nism in Coq, and prove the preservation of a certain prop-
erty.



1 -module(fact_main).

2 -export([fact/1]).

3

4 fact(N) →
5 _ = spawn(factorial, factorial_system,

6 [int2nat(N), self()]),

7 receive

8 {nat_msg, Result} →
9 io:fwrite("fact(~w) = ~w~n",

10 [N, nat2int(Result)]);

11 _ →
12 io:fwrite("error~n")

13 end.

Figure 18. Example: user code to execute factorial system

Furthermore, we like to provide bridge library between
user code and extracted code for convenience, for example,
nat2int and int2nat in Figure 18.

7. Related Work
Applπ is a Coq library for modeling and verifying concur-
rent programs [2]. Actario is very inspired by Applπ, for ex-
ample, the definition of fairness, continuation passing style
in actions and framework design. The main difference of
Applπ and Actario is that Applπ adopts π-calculus for its
concurrent computation basic, but Actario adopts the Actor
model for its concurrent computation basic.

Musser and Varela[9] formalized the Actor model for the
Athena theorem prover[5]. Within their formalization, main-
taining the uniqueness of actor names is formally proved.
However, one must manually specify a fresh name for each
new actor. In contrast, the automatic actor naming mecha-
nism in Actario eases the specification of complex systems.
In addition, Actraio provides an extraction mechanism of
runnable Erlang code.

Verdi is a framework for constructing and verifying fault-
tolerant distributed systems [14]. A system assumed no net-
work failure is converted to the system which tolerates drop-
ping packets, duplication of packets, and machine failure.
One of the purposes of Actario is also to build and verify
fault-tolerant distributed systems. We will introduce super-
visor mechanism to achieve building fault-tolerant systems
generally used in Erlang and Akka.

Tony Garnock-Jones, Sam Tobin-Hochstadt, and Matthias
Felleisen give a formalization of the Actor model using Coq
[8]. In this paper, the operational semantics is formalized so
that transition is decidable. Due to this, it is difficult to apply
the formalization to realistic concurrent systems.

8. Concluding Remarks
In this paper, we present Actario, a Coq framework for de-
scribing and verifying actor-based systems. Actario is de-

signed to support implicit naming of actors. This simplifies
the description of actor systems. We have formally proved
that the underlying execution model provided in the frame-
work satisfies important properties including name unique-
ness, actor persistence and message persistence. The fact im-
plies that a system described using Actario is guaranteed to
have these actor properties.

Actario is currently under development and still does not
provide convenient libraries of predicates, lemmas, tactics
and so forth. Thus, verifying a user-defined actor system
may involve a large amount of work. Providing such libraries
should be included in the future work.

In addition, we like to extend Actario to support extended
Actor models. For example, extensions that support high-
level synchronization mechanisms such as [6], coordination
models[12], and reflective models such as [13].

A. Labeled Transition Semantics in Actario
The full labeled transition semantics described in Section 3
is shown in Figure 19. The each of inductive constructors
corresponds to each transitions of Figure 12.
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