
1

Using Low Power Coprocessors in an FRP
Language for Embedded Systems

Go Suzuki, Akihiko Yokoyama,
Sosuke Moriguchi and Takuo Watanabe

APRIS2023 (23/11/1)

Programming Systems Group
Department of Computer Science, Tokyo Institute of Technology

P
S G

2

About This Work

Observed lower power consumption and
acceptable state transition time overhead.

Goal

Approach

Evaluation

To provide a good abstraction mechanism
for using low power coprocessors to reduce
power consumption of embedded systems.

Introduce a mechanism for switching
running processors to XStorm, an FRP
language for embedded systems.

3

Backgrounds

1. Functional Reactive Programming (FRP)
A) A Theremin Example
B) Key concept of FRP: Time-Varying Values
C) XStorm, an FRP language with an abstraction

mechanism for modeling stateful behaviors.

2. Low Power Coprocessor
A) Target : ESP32-S3 and RISC-V Ultra Low Power

Coprocessor (ULP Coprocessor)
B) An example to reduce power consumption

4

Example : Theremin

“Theremin” : an electronic musical
instrument whose sound varies according
to the position of the performer’s hands.

Example Implementation
Distance Sensor

(ToF) for frequency

Microcontroller
(ESP32-S3)

Speaker

I2C

PWM

GPIO
Button for

volume

5

Functional Reactive Programming (FRP)

Time-Varying Values (aka Signals)
abstraction of values that change over time

Distance
Sensor

dist_avgdist freq

vol

Speaker

Time-varying values

btn volume_mode …
Button

frequency

volume

System

6

XStorm [Matsumura et al. 2020]

An FRP Language for small-scale embedded devices
(AVR, ESP32, Cortex-M, etc.)
Translates to Standard C (or C++).
Features

• An abstraction mechanism for stateful
behaviors

• Statically-typed
• Simple Syntax

(no lifting, no callbacks)
• Statically-determined runtime memory size

7

Theremin in XStorm

Node : time-varying value in XStorm
node dist_avg = (dist * 4 + dist_avg@last * 6) / 10
node freq = dist_avg * 2

21
dist_avgdist

3
freq

volbtn volume_mode

dist_avg is a moving average of dist.

Iteration: Each node is updated
according to the dependency.

dist is updated before dist_avg.

The generated C program
repeats iterations for the
reactivity.

8

Theremin in XStorm : Stateful Behavior

The Theremin has two states. They can be
described in XStorm as follows.
state On {

node dist_avg = (dist * 4 …
node freq = dist_avg * 2
…

}

state Off {
node freq = 0
…

}

dist_avgdist freq

volbtn volume_mode

state
on

state
off

dist freq

volbtn

0

transition

No Sound
volume_mode

9

Theremin in XStorm : Stateful Behavior

switch specifies the next state. Retain represents
staying in the current state.
state On {
node …
switch: if dist_avg > 1500

then Off else Retain
}

state Off {
node …
switch: if dist < 1500

then On else Retain
}

state
On

state
Off

dist_avg > 1500
(Out of range) dist < 1500

dist_avg <= 1500

dist >= 1500
(Out of range)

10

Target: ESP32-S3

ESP32-S3 has RISC-V Ultra Low Power coprocessor
(ULP coprocessor).

Main Processor
(Xtensa LX7)

RISC-V ULP
Coprocessor
(PicoRV32)

Wi-Fi
PWM

SPI etc.

GPIO
I2C
A/D

×
inaccessible

Internal SRAM
512KiB

RTC Slow
Memory

8KiB

Peripheral Controllers Memories

×
inaccessible

accessibleaccessible

12

Sleep States

Two Sleep states: Light-Sleep and Deep-Sleep
can reduce power consumption. The ULP
coprocessor runs under these sleep states.

Typical consumptions (3.3V) from ESP32-S3 Series Datasheet v1.7 (2023-06)
Active with lowest frequency (40MHz) consumes 13.2 mA

Active
(Modem-Sleep,

160MHz)

Light-Sleep Deep-Sleep

Internal SRAM ●Retain ×Discard
Program Counter of
the Main Processor

●Retain ×Return to the
entry point

Typical Consumptions ×39.9 mA 240 μA ●7 μA

13

An Example to Reduce Power Consumption

Maintaining the reactivity in the state Off with the
ULP coprocessor can reduce power consumption.

The ULP coprocessor supports I2C, so interaction by the
distance sensor is maintained.

Main Processor
(ACTIVE)

RISC-V ULP
Coprocessor

(SLEEP)

PWM

GPIO
I2C

state On

Speaker

Button
Dist.

Main Processor
(SLEEP)

RISC-V ULP
Coprocessor
(ACTIVE)

PWM

GPIO
I2C

state Off

Speaker

Button
Dist.

14

Advantage/Disadvantage of the ULP Coprocessor

⚫Advantage : Lower power consumption than the
main processor. 7 μA (ULP) vs. 13 mA (lowest freq.)

⚫Disadvantages
✓Different ISA & I/O configuration
⚫ Limited functionality (e.g., no FPU) leads to lower power

consumption, but more difficult to use (Execution migration
solutions are expensive.[Q&A Page])

✓ Limited memory space and different memory mapping
✓ Need for the processor power state management
◼ Higher power consumption with frequent switching (v.s.

DVFS)

16

Proposed Mechanism

We introduce “on” modifier to XStorm, which
declares which processor to run in each state.

state On on main {
node …
switch: …

}

state Off on ulp {
node …
switch: …

}

The compiler produces:
• A program running on

the main processor.
• Data transfer between

processors.
• A program running on

the ULP coprocessor.

17

Evaluation

⚫Evaluations using the Theremin example:
◼ Power consumption (excluding peripherals)
⚫ Comparison: No Coprocessor, Light-Sleep, Deep-Sleep
◼ Latency of state transitions
⚫ Comparison: Light-Sleep, Deep-Sleep

⚫Environment:
◼ ESP32-S3-DevkitC-1 N8 v1.0 board
◼ Ammeter (Power Consumption): Nordic Power Profiler

Kit 2 (3.3V output)
◼ FPGA (Latency Measurement): ZYBO Z7-20 (50MHz)

18

Result: Power Consumption

We observed that, in the state Off, the current is
lower than in the state On with the ULP coprocessor.

32mA 32mA 32mA 32mA2.6
mA

1.3
mA

Mean of 10th ~ 90th percentiles

C
ur

re
nt

 [
m

A
]

20

Result: Latency

We measured the overhead of state transitions.

Light-Sleep Deep-Sleep
Data Transfer
Main -> ULP

9.63 13.91

Data Transfer
ULP -> Main

14.64 39.43

ULP Wake-up 164.00 179.75
Main Wake-up 579.29 79669.60

Boot Process
consumes a lot

of time.[μs]

Data Transfer
takes less time
than processors’

wake-ups.

21

Related Work

Other FRP languages for embedded systems
Hailstorm [Sarkar, A. et al ‘20] and Juniper
[Helbling, C. et al ‘16] have different ways of
describing stateful behaviors.

Signal:foldP(fn (inputs, state) ->
case state of
| On => (...) // state On { ... }
| Off => (...) // state Off { ... }
end

end, inputSig)

22

Related Work: Other microcontrollers

⚫There are several microcontrollers with low power
coprocessors.

⚫Our prototype is specialized for ESP32-S3, but the
adaption is not difficult for the microcontrollers
that (e.g., i.MX RT, LPC and PSoC):
◼ have Inter-communication via memory-mapped I/O
◼ have C API to enter the sleep state
◼ restart from the entry point or the last position
◼ can access before coprocessor wake-ups or the

coprocessor can wait for data transfer

23

Summary

⚫Our proposed mechanism allows us to use the ULP
coprocessor and reduce power consumption.
◼ An abstraction mechanism to describe stateful behaviors

with a low power coprocessor
◼ Data transfer is automatically generated by the compiler

⚫The evaluations show that our prototype reduces
power consumption and data transfer is acceptable
overhead in ESP32-S3.

⚫Future Work: Support for other microcontrollers.
www.psg.c.titech.ac.jp

	Slide 1
	Slide 2: About This Work
	Slide 3: Backgrounds
	Slide 4: Example : Theremin
	Slide 5: Functional Reactive Programming (FRP)
	Slide 6: XStorm [Matsumura et al. 2020]
	Slide 7: Theremin in XStorm
	Slide 8: Theremin in XStorm : Stateful Behavior
	Slide 9: Theremin in XStorm : Stateful Behavior
	Slide 10: Target: ESP32-S3
	Slide 12: Sleep States
	Slide 13: An Example to Reduce Power Consumption
	Slide 14: Advantage/Disadvantage of the ULP Coprocessor
	Slide 16: Proposed Mechanism
	Slide 17: Evaluation
	Slide 18: Result: Power Consumption
	Slide 20: Result: Latency
	Slide 21: Related Work
	Slide 22: Related Work: Other microcontrollers
	Slide 23: Summary
	Slide 24
	Slide 25: Execution Migration
	Slide 26: Generated Program (Main)
	Slide 27: Generated Program (ULP)
	Slide 28: Execution Flow (No transition)
	Slide 29: Execution Flow (Main → ULP)
	Slide 30: Execution Flow (ULP → Main; Light-Sleep)
	Slide 31: Execution Flow (ULP → Main; Deep-Sleep)
	Slide 33
	Slide 34: Fonts and Text Colors
	Slide 35: Font Size samples
	Slide 36: Example – Title
	Slide 37: Available images

